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Abstract— Differentiating between normal human activity 
and aberrant behavior via closed circuit television cameras 
is a difficult and fatiguing task.  The vigilance required of 
human observers when engaged in such tasks must remain 
constant, yet attention falls off dramatically over time.  In 
this paper we propose an automated system to monitor 
video sensors and tag aberrant human activities for 
immediate review by human monitors. From the 
psychological perspective, isolated human motion depicted 
by point-light walker (PLW) displays have been shown to be 
salient for recognition of action [17] and determination of 
emotional state [18].  We propose that by using the motion 
data that immediately precedes hostile behavior, it may be 
possible to classify hostile intent before destructive actions 
take place.  These hostile intent gestures can be used to 
assign individuals a threat assessment level and improve 
remote sensor monitoring. Such assessments are useful for 
monitoring human activities and could potentially provide 
early warning of IED emplacement activities. 

INTRODUCTION 

Closed circuit television (CCTV) cameras have become a 
pervasive component of modern society’s arsenal of crime 
deterrent devices.  When employed as preventative devices, 
CCTVs are only as effective as the human monitor who 
views the data and orchestrates a response.  The human 
operator in a CCTV system is subject to boredom and 
fatigue, and usually has to shift his or her attention between 
a large number of CCTV camera inputs – the combination 
of fatigue and distraction makes it difficult for human 
CCTV monitors to detect criminal and terrorist behavior.  
Additionally, the cues leading up to these behaviors may be 
subtle, easily escaping human detection during cursory 
monitoring.  Here we detail a software system that assists 
the CCTV monitor by “flagging” potentially hostile 
behavior for further scrutiny, in order to increase operational 
efficiency and potentially save lives. 
A system that detects and highlights hostile behavior in 
CCTV camera data will improve monitoring only if it is 
able to reliably detect hostile behavior without distracting 
the human monitor with false-positive results (non-hostile 
behavior tagged as hostile, see Table 1).  For a multiple 
camera system, false-positives are acceptable so long as 
they do not distract the user from true hostile behavior – or 
in other words, the false positives are not hazardous false-

positives.  Benign false positives could potentially be 
distracting, but an optimal intent detection system should 
closely mirror the behavior of a skilled CCTV camera 
operator, and therefore not present too many distractions. 

 
Table 1: Detection Criteria 

Detection Type Description
True Positive The system detects hostile 

actions. 
True Negative The system detects the lack 

of hostile actions. 
False Positive The system detects hostile 

actions where none exist. 
False Negative The system fails to detect 

hostile actions where they 
do exist. 

Hazardous False Positive The system simultaneously 
detects a false positive and a 
false negative on different 
data sources. 

Benign False Positive The system simultaneously 
detects false positives and 
true negatives. 

 
The ability to extract semantic information solely from 
human biological motion has been well known for some 
time [14].  In his seminal work, Johansson revealed that 
presenting coordinated human joint motion was sufficient 
for rendering the impression of a human being walking or 
running through space, despite the lack of any associated 
visual cues such as body form or clothing.   Johansson’s 
point-light walker displays (see Figure 1) provided a novel 
stimulus platform from which a rich body of research has 
developed, leading to methodologies for examining visual 
motion perception in isolation – without interference from 
extraneous visual information.  The demonstrated ability to 
determine human gender [16],[23],[28], recognize action 
[17] and determine emotional state [18] from motion cues 
alone illustrates the sensitivity of the human visual system 
to motion-derived information.  Perception of biological 
motion has also been shown to be a process so robust that 
even incidental exposure commands the resources of human 
visual attention [26].  This fundamental, yet malleable, 
human perceptual ability improves with both exposure to 
specific motions and action experience [27], [4].  By 



empirically investigating the component processes involved 
in perception-based anticipatory inference of human intent, 
we will attempt to improve “intent-detection” based on 
behavioral indicators and subtle threat cues. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
With respect to detecting hostile intent, each point in the 
PLW might have its own “gesture” motion – which when 
examined in relation to the other links in the object, can be 
used to determine the overall state of the system.  For 
example, when solely examining the gestures created by the 
foot and knee joint of a human, one can see that the motions 
of those features are different depending on whether a 
person is walking or running. 

The gesture recognition module presented here can 
determine if a dynamic motion is occurring, and using that 
information with associated kinematic link relationships, 
develop a hypothesis about the object’s overall behavior.  
Such state recognition is not limited to identifying human 
(and other animal) motion – a vehicle’s state can also be 
determined by examining the various moving parts, such as 
the trajectory and tire motions.  Even unknown devices 
(such as mobile robots) could be classified by examining 
their motion and behavioral characteristics. 

In this paper, we demonstrate how to apply a physics-based 
gesture recognition system (developed to identify human 
oscillatory hand motions) that can identify human behaviors 
from data obtained in a CCTV surveillance environment.  
First, a general kinematic relationship is modeled.  Next, 
specific link combinations are parameterized and modeled, 
which enables the system to recognize such motions as 
human gaits (if the links are legs) or the throwing of an 
object (if the links are arms).  Finally, a whole body 
(human, vehicle, and other) link representation and dynamic 
model are detailed. 

OVERVIEW 

The body of this work is divided into four sections that 
describe the key components and motivations in creating an 
intent detection system.  The first section details the 

psychology literature on intent detection and outlines our 
rationale on why such a system is possible, along with our 
potential data sources.  Section II details Cybernet Systems’ 
approach to gesture recognition, and how we will apply that 
technology to intent detection. The third section details how 
we intend to extract data about human behavior from live 
CCTV video for classification by the gesture recognition 
system described in Section II. The fourth and final section 
details our conclusions, the applications of our research 
system, and our future work.  

SECTION I: HUMAN PERCEPTION OF INTENT 

The U.S. Army Research Laboratory is examining the 
component processes that underlie human visual perception 
of biological motion, specifically for determining hostile 
intent.  While human beings have a demonstrated capacity 
to recognize and classify emotion based on non-verbal 
communicative cues [8],[9],[12] with evidence to support a 
degree of universality across cultures [10], the accurate 
classification of intent based on non-verbal visual cues 
varies in its reliability.  Research plans are underway to 
examine the role of exposure to specified classes of human 
biological motion as a modulator for proficiency in rapidly 
classifying individuals with respect to intent.   

While general experience is surely a main factor in the 
development of such a skill, the specific processes that lead 
to this type of perceptual capacity are not clear.  Focused 
repetition of elemental concepts and actions is surely critical 
to learning in general.  However, the perceptual learning 
necessary for the reliable detection of intent partially stands 
apart from this axiom.  Skill development, characterized by 
perceptual learning, is largely task and stimulus specific, 
non-transferable to unrelated skills, not subject to explicit 
knowledge for “how” skill develops, and results in structural 
and functional neural change [11].  The most important 
distinction is that perceptual learning is an implicit process 
often not subject to awareness of the component elements of 
experiential repetition. Explicit knowledge of the elemental 
components of a person’s mannerisms or style of walk (i.e., 
gait) after repeated visual exposure is not necessary for 
development of the ability to recognize that person, for 
instance, simply by remotely observing them walking at a 
great distance away.  Yet these component elements provide 
the bottom-up sensory information necessary for the 
perception and identification of that remote individual as a 
person whom you know.  In the same way, the ability to 
exhaustively declare the rules of grammar is not a pre-
requisite for fluent and grammatical speech, yet exposure to 
grammatical structure is necessary for grammatical 
language acquisition and production.  It is the eventual aim 
of this research to explore how mere exposure to human 
biological motion might modulate intent perception skill 
development. 

This research seeks to specify the sensory and perceptual 
dynamics of rapid decision-making based on human 
biological motion cues alone, with the delineation of the 
dynamic elements of hostility in biomotion noted as critical 

Figure 1. Outline contours of a walking and running 
subject (A) and the corresponding point-light 

representations (B) [Johansson, 1973].
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to this effort.  The influence of emotional content has been 
shown to modulate the visual perception of human 
biological motion – with biomotion sequences featuring 
“anger” exerting considerable influence over detection 
performance, even in the absence of whole-body point-light 
walker displays [5].  This demonstrated sensitivity to point-
light renderings of human motion, despite stimulus 
degradation or based on only partial body component 
movement [24], underscores the inference-based processing 
that defines human perception and action – based on ever-
changing, often incomplete sensory information evident in 
the physical environment [21], [22], [13]. The notion that an 
already robust perceptual sensitivity may be heightened for 
emotional stimuli [5] is intriguing from the perspective of 
military application. 

By focusing on human anticipatory inference of 
intentionality, we will examine the human ability to classify 
threatening actions based solely upon incomplete human 
motion cues, with a specific focus on human motion 
characteristics that lead up to a violent or threatening action.  
The goal is a greater understanding of the behavioral 
tendencies that precede a threatening act, with the hope that 
such knowledge will provide an advantage to an operator – 
based on clear perception that leads to rapid, anticipatory, 
and proactive decisions in order to thwart hostility and 
prevent battlefield casualties.  The perceptual skill necessary 
for rapid identification and action relative to the precursors 
of a hostile act, if partially learned prior to deployment, 
would potentially shorten the learning curve for a soldier 
new to a battlefield – improving confidence, increasing 
mission effectiveness and possibly saving lives. 

Markerless Motion Capture and Stimulus Presentation 

To create a stimulus set that isolates human motion from the 
cacophony of visual information that typically encompasses 
a complex scene, video footage of hostile and non-
threatening action sequences will be translated into point-
light walker (PLW) displays.  Video editing software will be 
utilized in conjunction with customized software based on 
open-source code generated at the Temple University Vision 
Laboratory [25] to enable markerless motion-capture for 
point-light displays.  Selected actors will be isolated from 
video sequences and rendered into point-light walker 
displays – animations that are devoid of background detail 
or motion information from alternate objects or individuals 
that may be present in the original footage.  The stimuli will 
depict isolated point-light renderings of actions ranging 
from overtly hostile to innocuous.  Given that the nature of 
the depicted actions is a subjective categorization 
determined by the experimenters, an initial experiment will 
validate experimenter categorization of thematic action 
content contained in the displays.  While video of action 
sequences featuring violent or threatening content would 
surely be rated accordingly, and though human observers 
are sensitive to the semantic content conveyed by PLW 
displays, this initial experiment will test stimulus validity by 
asking subjects to passively observe each display and rate 

the actions they depict with respect to perceived threat 
content.   
In a subsequent experiment, we will examine human response 
timing and accuracy when presented with PLW displays such 
as those detailed above.  Subjects will be asked to indicate as 
quickly and as accurately as possible whether a PLW 
stimulus depicts a threatening or innocuous event, using a 
forced-choice paradigm that will record accuracy and 
response timing.  Given that accurate identification of threat 
within an operational scenario is less useful subsequent to a 
hostile action than it could be prior to execution, where 
preventative measures might still be viable, the emphasis for 
this experiment is the examination of response characteristics 
that fall within the temporal window preceding the terminal 
event in an action sequence.  To ensure rapid decision-
making on the part of the observer that falls within that 
temporal period, the PLW displays that will be presented to 
subjects will not feature the final frames that animate a 
particular goal action.  For example, if the PLW rendering 
depicts an individual placing a mug of coffee on a countertop, 
the stimulus may show the individual walking toward the 
counter and executing the preliminary arm and hand motions 
that are required to set the mug down – but the display will 
stop short of the final execution of the terminal event, in this 
case the release of the mug as it settles on the surface of the 
counter.  In this way, observers will not be inclined to wait for 
the completion of an executed motion before rendering their 
classification of “threatening” or “innocuous” – since the 
executed motion they are presented with will never be fully 
enacted.   

Demographic information will be collected to record 
personal and experiential information that may impact 
performance data – included will be questions regarding 
computing, video gaming, as well as living and working 
experience that relates broadly as possible modifiers for 
behavioral analysis proficiency.  Additionally, the predictive 
power of efficacy expectations regarding behavior or task 
performance will be examined by recording data from a 
Situational Self-Efficacy Scale [1], [2], [3].  For the 
purposes of this research, it will be used to evaluate 
response confidence when rating experimental stimuli and 
providing rapid evaluation of stimulus content.  Participants 
will rate (on a scale of 1 to 10) their level of confidence in 
their ability to accurately perceive the thematic nature of 
stimulus content over the course of the stimulus set. 

SECTION II: MODELING HUMAN GESTURES FOR 
BEHAVIOR 

In this system, the gesture recognition algorithms are 
located in an Identification Module – this module uses the 
position and velocity information provided by the sensor 
module to identify the gesture.  The Identification Module 
contains a bank of predictor bins (see Figure 2), each 
containing a dynamic system model with parameters preset 
to a specific gesture.  We assume that the motions of human 
circular gestures are decoupled in x and y, therefore there 
are separate predictor bins for the x and y axes (as well as 



one for z axis when dealing with three dimensional 
motions).  A predictor bin is required for each gesture type 
for each dimension – the position and velocity information 
from the sensor module is fed directly into each bin. 
  

 
Figure 2: Simplified Diagram of the Predictor Module 

which Determines Gesture Characteristics. 
 
The idea for seeding each bin with different parameters was 
inspired by Narendra and Balakrishnan's work on improving 
the transient response of adaptive control systems.  In this 
work, they created a bank of indirect controllers that were 
tuned online, but whose identification models had different 
initial estimates of the plant parameters.  When the plant 
was identified, the bin that best matched that identification 
supplied a required control strategy for the system [20]. 

Each bin's model, which has parameters that tune it to a 
specific gesture, is used to predict the future position and 
velocity of the motion – the prediction of a particular gesture 
is made by feeding the current state of the motion into the 
gesture model.  This prediction is compared to the next 
position and velocity, a residual error is computed, and the 
bin for each axis with the least residual error is the best 
gesture match.  If the best gesture match is not below a 
predefined threshold (which is a measure of how much 
variation from a specific gesture is allowed), then the result is 
ignored and no gesture is identified.  Otherwise, geometric 
information is used to constrain the gesture further – a single 
gesture identification number, which represents the 
combination of the best x bin, the best y bin, and the 
geometric information, is output to the transformation 
module.  This number (or NULL if no gesture is identified) is 
output immediately upon the initiation of the gesture, and is 
continually updated.  The parameters used to initially seed 
each predictor bin can be calculated by feeding the data of 
each axis from previously categorized motions into the 
recursive linear least squares identifier. 

The identification module contains the majority of the 
required processing.  Compared to most of the systems 
developed for gesture recognition (for example, see [7], and 
[19]), the identification module requires relatively little 

processing time and memory to identify each individual 
gesture feature. 

BEHAVIOR RECOGNITION SYSTEM 

Just as the gesture recognition module is built on a bank of 
predictor bins, the behavior recognition system is composed 
of a bank of gesture recognition modules.  Each module 
focuses on a specific point of the body (such as features 
acquired from a PLW system).  As that point moves through 
space, a “gesture” is generated and identified.  The 
combination of gestures from those points is what we define 
as a motion behavior, which can be categorized and 
identified.  The system, illustrated in Figure 3, details the 
behavior recognition system – the simplicity of the behavior 
recognition system is possible because of the strength and 
utility of the gesture recognition modules. 
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Figure 3:  Behavior Recognition System. 

OVERALL SYSTEM FLOW 

The signal flow proceeds as follows:  a user is tagged at 
various body locations using a series of image processing 
operations on CCTV video, and the data is acquired as fast 
as possible (normally at 30 Hz, but a minimum of only 10 
Hz is required) and sent to a parser that splits off the data 
from each specific body location to its own gesture 
recognition module (GRM) – there is one GRM for each 
tagged feature.  Each GRM outputs the gesture it 
recognized, if any, to an identification module that matches 
the gestures to their body location – defining a behavior.  If 
this behavior matches one from a set of predefined 
behaviors, then this information is outputted. 

THE PARSER 

In the Parser module, the data time coordinates from each 
tagged body location (which are input as a stream of 
consecutive x,y,z), are split up according to body location 
and sent to an appropriate GRM.  This module needs to be 



changed whenever the input data is of a different format.  
Runtime variables define how many body parts are being 
tracked, and therefore the parser uses this information to 
determine the number of GRM bins and how to split up the 
data properly. 

GESTURE RECOGNITION MODULES (GRMS) 

The time and coordinate data from each body feature is used 
as inputs to an appropriate GRM.  Each GRM module is 
exactly as described earlier, with these modules handling 
three-dimensional points as a function of time. 

BEHAVIOR IDENTIFICATION MODULE 

The Behavior Identification Module accepts as inputs 
gesture types and body locations from the GRMs.  Various 
combinations of gestures at specific body locations are 
designated as behaviors, and if a match is found the program 
outputs that match. 

SECTION III: CCTV DATA EXTRACTION 

The collection of CCTV camera data for our intent detection 
system is performed at both the system level (i.e. the 
collection of CCTV cameras at a facility) and at the camera 
level. The rationale for using a multiple camera system is 
that it we believe that behaviors exhibited between multiple 
cameras may yield a secondary source of intent data. For 
example, multiple cameras make it possible to track an 
individual moving through a facility or along a road and 
observe surveillance behaviors that may be indicative of 
IED emplacement.   

SINGLE CAMERA DATA EXTRACTION  

At the camera level, human motion data for our gesture 
recognition system is extracted from CCTV cameras using a 
series of image processing operations that yield a set of 
features for processing by our gesture recognition system. 
For a single CCTV camera the chain of image processing 
operations is as follows: 

1. Capture raw image data. 
2. Pre-process, data - resize and flip as necessary. 
3. Segment foreground and background data using the 

codebook method [15]. 
4. Threshold the foreground imagery into binary 

connected-component “blobs” or features. 
5. Dilate or merge the features and ignore any feature 

that meets our criteria for noise (e.g. too small, or 
unrealistic aspect ratio). 

6. Perform a rough classification of the binary image 
components using parameters like size, aspect 
ratio, position, and color profile to yield a 
classification confidence pair. (e.g. 0.6 confidence 
that a feature is a torso).  

7. Attempt to associate current frame image features 
with “similar” features from previous frames.  Re-

evaluate the feature classification based on 
previous frame data. 

8. Attempt to de-compose large features into smaller 
sub-features using convex hull detection (e.g. 
breaking torsos, that include legs and arms, into 
constituent parts).  

9. Feed refined image feature position data and 
classification into the gesture recognition system 
mentioned previously. 

MULTIPLE CAMERA DATA EXTRACTION  

For multiple camera environments, the system consists of 
multiple camera sensor nodes, software applications, and a 
computer network (see Figure 4).  This modular approach is 
highly scalable; new sensor nodes and applications can be 
added as needed.  Intelligent pre-processing of data at each 
sensor node minimizes required network bandwidth.  Each 
sensor node contains a standard functionality suite that 
includes data capture, data recording, data processing, 
configuration, and networking (see Figure 4). 
 

 
Figure 4: Block Diagram of a Sensor Node 

 
A suite of specific programs, rather than a single monolithic 
application, controls the configuration of each node.  Each of 
these programs has a set of operational parameters that are 
stored such that they can be updated in real-time via some 
API, and is accessible to the database tagging applications.  
The programs can be stopped and started remotely. 

Data captured on a sensor node is stored in a SQL database.  
SQL Data are divided temporally at some sensible 
resolution (e.g. 5 or 10 seconds of video data) and stored as 
“clips” within the SQL database.  Each clip can then be 
tagged with an arbitrary amount of metadata using relational 
methods.  The power of this approach comes from the 
ability of multiple, independent data processing applications 
browsing the data that has been captured and then further 
adding to the metadata.  This approach provides the 
capability to have applications that assemble data streams in 
to an arbitrary collection that match some specified criteria, 
and then make those streams available for remote viewing. 



The network interface takes advantage of industry 
standards.  We will use IP for all network communications, 
and HTTP for data transactions wherever possible.  By 
using a web application server such as Apache, we decouple 
the viewing applications from the actual applications on 
each node, which allows us to modify either without 
disrupting the other.  This approach also supports the 
modular addition of new capabilities without changing the 
infrastructure. 

The HTML/CSS forms provide the user interfaces to all 
programs (configuration, control, data processing, data 
viewing, etc).  This provides the capability for viewing 
whatever data a node has to offer without needing a priori 
knowledge of its capabilities; the display application is 
stored on the sensor node.  This approach allows us to 
leverage existing web browser plug-ins to view video data, 
receive real-time data updates (via AJAX), and aggregate 
multiple data sources on one display (using portal 
technology).  At the same time, this does not preclude 
writing non-web applications – stand-alone applications can 
still access data using HTTP, then process and display it in 
whatever manner is needed. 

SECTION IV: EXPERIMENTS, FUTURE 
DIRECTIONS, AND CONCLUSIONS 

We performed experiments to test the behavior recognition 
system.  First, a variety of behaviors were performed and 
served as the baseline for identification.  Then these 
gestures were repeated and the data sent through the system. 
The behaviors centered on repeated leg and waist motion.  
The three main types of behaviors performed were walking, 
running, and jumping in three dimensions. 

Rigorous experiments were performed using these behaviors.  
Originally, a Linear with Offset Component model (2 
parameters) was used for gesture/behavior differentiation.  
However, that low number of parameters representation was 
not sufficient to capture the richness of motion present in 
these behaviors, and the system failed.  When we instead used 
a Velocity Damping Terms model for gesture/behavior 
differentiation, there was clear discrimination between the 
motions identified by the various identification bins and 
behavior recognition was possible. 

The research and development conducted during this 
program has significantly advanced the gesture recognition 
of dynamic gestures and the recognition of human behaviors 
– it has created the foundation from which advanced 
behavior recognition systems can be constructed.  Though 
this research and development provides a vertical slice 
behavior recognition system, it is only a first step.  We 
intend to advance the research to develop a reliable, 
efficient, and robust behavior recognition system.  
In particular, our system's utility would be greatly enhanced 
if the system could automatically expand its gesture lexicon, 
and we have begun steps to incorporate such a 
methodology.  This would “teach” the system new gestures 
rather than having to hard-code additional predictor bins, 

since the classification scheme cannot identify a motion that 
does not match any of the currently seeded parameter bins.  
However, we can make use of on-line free running 
identification bins [6] to determine parameters for any input 
motion – if the bank of predictor bins does not recognize a 
gesture but the identification bin produces parameters that 
yield consistent prediction results, then the system 
recognizes the motion as a new gesture.  The system would 
then add a new predictor, seeded with the computed 
parameters, to the bank of predictor bins.  Just as certain 
voice recognition systems can be trained to recognize 
specific voice patterns, our system would be able to 
calibrate itself to recognize user-specific gestures. 
We are also exploring the identification of group behaviors, 
based on combinations of behaviors from one or more 
sensors in a CCTV environment.  Such group behaviors 
would include the recognition of IED placement activities 
that require more than one person to bury the device and 
plant the transmitter or lay and bury the triggering wire.   
Any future developments must involve verification of the 
behavior recognition system.  Verification involves both the 
testing of the algorithms and the use of modules in a 
completely integrated system.  To verify the system, our 
plan is to: 
Test the system with a wide variety of users. 
Test the system using a large number of behaviors in our 
lexicon. 
In conjunction with other gesture projects, we will be able to 
track untagged features – with this ability we will test the 
system using data from video surveillance cameras.  
We strongly believe that these three steps will verify the 
system, thus facilitating its development into a full system 
useful in a wide variety of applications. 
Check point duty and security tasks represent high-risk 
missions for soldiers.  The increase of asymmetric threats to 
military and civilian assets throughout the world have 
generated a critical need for enhanced perimeter security 
systems, such as automated surveillance systems.  Current 
U.S. Military operations, such as those in Iraq and 
Afghanistan, have greatly increased the number of U.S. assets 
in harms way – which in turn has put a strain on our ability to 
adequately protect all of our facilities.  Appropriate perimeter 
and facility security requires continuous indoor and outdoor 
monitoring under a wide variety of environmental conditions 
– typically these locations are complex in that they include 
open perimeters and high traffic flow that would strain even 
human observers. 

To maximize the effectiveness of military and security 
personnel, automated real-time methods for tracking, 
identifying, and predicting the activities of individuals and 
groups are crucial.  The human resources available to such 
tasks are constantly being reduced, while the prevention of 
negative actions must be increased.  Small numbers of 
individuals are able to cause a large amount of damage and 
terror by going after non-military secondary targets that still 
have an adverse affect on the military’s abilities to fulfill its 
missions – the system presented here can be used to identify 
behaviors that would be flagged for observation and 



evaluation by human monitors based on their observed 
threat, thereby reducing the tedium and making it possible 
for one operator to accurately and attentively observe large 
numbers of CCTV sensors. 
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